

The development and integration of
the PaintWeb paint tool in Moodle

 Marius and Mihai Şucan
 ”Aurel Vlaicu” University, Arad, Romania

 A Google Summer of Code 2009 project

 Mentor: Martin Langhoff

August 2009

http://docs.moodle.org/en/User:Martin_Langhoff

 Last year I developed a Web application for
online drawing. I published it as an open-source
project, GPL v3, at Google Code.

 PaintWeb was a technical demo of the new
HTML 5 Canvas API (the 2D context), together
with some Web Forms 2.

 The result:
 A single script of about 6000 lines of code, with no

jsdoc-formatted comments.
 Two tutorials on Canvas for Opera Software.

PaintWeb – The beginnings

http://code.google.com/p/paintweb
http://www.opera.com/

PaintWeb in november 2008

 It began as a tech demo for tutorials on HTML 5 for
Opera.

 It evolved beyond initial expectations.

 I decided open-sourcing the code, in the hope of
further improvements in the future.

 While it may not be too obvious, PaintWeb already
surpasses the classical MS Paint in some ways.

 Originality: PaintWeb is the only open-source project
which provides a Web application for online drawing in
the form of a component, which uses HTML 5 Canvas.

 There are attempts with Flash, Java, or even
Canvas demos, but none as evolved as PaintWeb,
and none having the same technologies.

Why PaintWeb?

The GSOC project proposal

 A single element: <canvas>.

 The API is in the DOM, native to the Web browser,
no extensions/plugins needed.

 Fast bitmap drawing on a 2D surface, without any
DOM elements for each path or shape.

 Better keyboard accessibility.

 It is well known that Flash, Java and plugins in
general have issues with the window focus.

 Almost no impact for page load performance.

 Much better browser stability.

 Plugins (especially Flash) cause the highest
number of crashes in Web browsers.

Why Canvas?

 Complete code reorganization.
 Performance optimisations for the OLPC XO.
 Defined an API for PaintWeb extensions.
 General improvements for features.
 A new interface.
 Packaging.
 TinyMCE 3 integration using a plugin.
 Moodle 1.9 and 2.0 integration.
 Documentation.

PaintWeb – What I did this summer

 Separate files for each drawing tool, extension
and language.

 New configuration file.
 More formal code, stricter guidelines, with more

consistency in the naming of functions and
variables.

 Jsdoc-formatted comments for all of the
methods and properties defined in PaintWeb.

 Separate files for the user interface: JavaScript,
CSS and XHTML.

PaintWeb – Code reorganization

 build/ - The packaged PaintWeb build.
 demos/ - PaintWeb integration demos.
 docs/ - documentation.
 ext/ - scripts for integration into external

projects.
 scripts/ - scripts used for packaging.
 src/ - the PaintWeb source code:

 extensions/, includes/, interfaces/, lang/ şi tools/;
 paintweb.js – the main script.

 tests/ - various tests performed for PaintWeb.

PaintWeb – Package structure

PaintWeb – Source code sample

 The One Laptop Per Child School Server project
includes Moodle.

 PaintWeb must run fine on the OLPC XO-1.
 Technical details about the OLPC XO-1 laptop:

 AMD processor, 433 Mhz, x86 compatible, 64 KB L1
cache, 128 KB L2 cache;

 DRAM memory, 256 MB (dual DDR333 166 Mhz);
 Storage: 1 GB or 2 GB SLC NAND flash;
 A special dual-layer display 7.5 inch, TFT.

 The XO runs Linux, based on Fedora 9.

 The default Web browser is Python-based and it
embeds Gecko 1.9.0.

PaintWeb – About the OLPC XO

 The problem: Images and texts are scaled up
on the OLPC XO.

 In about:config the layout.css.dpi value is set
to 134, instead of 96 (the default on PCs).

 The solution: cancel Canvas scaling.
 Say the DPI is 200, say canvas.width=200 px,

which is rendered at 400 px. We cancel scaling
with canvas.style.width=”100px”.

 The OLPC XO can be detected with browser
sniffing. This makes PaintWeb run much faster.
 CSS 3 Media queries are used with Gecko 1.9.1+.

PaintWeb – Performance optimisations

 Myth: JavaScript is fundamental to the
performance of common Web applications.

 Web applications are first affected by the
browser rendering performance.
 CSS+HTML, transparent images, etc.

 PaintWeb is slowed down by the rendering of
CSS+HTML and that of Canvas itself.
 PaintWeb is not (yet) affected by JS perf.

 As said, the OLPC XO performance was
affected by Canvas scaling and by a Canvas
background image.

PaintWeb – On performance

 Register extensions.
 PaintWeb.extensionRegister('id').

 Register drawing tools.
 PaintWeb.toolRegister('id').

 Register commands.
 PaintWeb.commandRegister('undo', undoFn).

 Add application event listeners.
 PaintWeb.events.add('imageSave', evFn).

 … and more (see the documentation).

PaintWeb – New API

http://code.google.com/p/paintweb/wiki/ExtendingPaintWeb

 A new extension: MouseKeys. Users can draw
without a mouse.

 Reimplemented the support for keyboard shortcuts,
which now enables much better browser
compatibility.

 Many improvements and fixes for the selection tool.
 A new “Hand” tool for dragging the image inside the

viewport.
 Improvements for the “Eraser” tool.
 Better support for big images, say 6000 x 6000 px.
 Improved browser compatibility for the text tool.

PaintWeb – Improved functionality

 Easy to modify, only three files: a CSS, an
XHTML and a JavaScript.

 Dynamically loaded, on user request.
 The HTML code includes proprietary attributes:

 <p data-pwCommand="imageSave">Save image</p>
 <p data-pwTool="selection">Selection</p>
 <input data-pwConfig="line.lineWidth"
type="number" min="1" max="100" value="1">

 Much better keyboard accessibility.
 Contextual user interface: options show up

dynamically, when needed.

PaintWeb – The new interface

PaintWeb – Screenshot

 Code packaging is driven by a Makefile and some
scripts written in java, bash and PHP.

 YUICompressor is used to compress JS and CSS.

 I wrote a PHP script which does image inlining using
data URLs inside CSS.

 Jsdoc-toolkit is used to generate the API reference.

 Results:
 From 70 files down to only 6 files.
 From 700 KB to 460 KB or even 140 KB (with gzipping).
 Initialization is under a second with a broadband

connection.

PaintWeb – Packaging

http://developer.yahoo.com/yui/compressor/
http://jsdoctoolkit.org/
http://www.robodesign.ro/paintweb/trunk/docs/api-ref/

 One plugin, easy to install (copy/paste folder).
 A button on the tool bar:

 If no image is selected: a new image is created and
then edited with PaintWeb.

 If an image is selected: PaintWeb allows you to edit
the image.

 An “Edit” button dynamically shown on top of
the selected image.
 You can also double-click on the image to edit it.

 A context menu (right click) item which allows
you to start PaintWeb.

PaintWeb – TinyMCE integration

PaintWeb in TinyMCE: screenshot

 Moodle 2.0 is under heavy development.
 Lots of improvements, including a new File API.
 It uses TinyMCE 3 by default.
 PaintWeb is integrated into TinyMCE and

images are saved using the new File API.
 PaintWeb has its own extension which deals

with saving images inside Moodle.
 Files attached to <textareas> are stored in a

user_draft file area. During form submission,
files are moved to a permanent file area.

PaintWeb – Moodle 2.0 integration

PaintWeb – TinyMCE 3 in Moodle 2

PaintWeb – PaintWeb in Moodle 2

 Moodle 1.9 is the current stable version. Only bug fixes are
accepted.

 It lacks a sufficiently evolved File API.

 It uses HTMLArea by default, and it also includes
TinyMCE 2 – both are quite outdated.

 Martin Langhoff published patches for TinyMCE 3
integration. I updated them to the latest version.

 PaintWeb can now be used in TinyMCE 3.
 Image save implementation is not yet complete. We have

to manually deal with obsolete images, and backup/restore
courses.

 This work will be available as contrib-patches for anyone.

 The patches will be used by the OLPC school server.

PaintWeb – Moodle 1.9 integration

 API references for the entire code, including the
drawing tools, extensions, commands, GUI,
and the application events.

 Usage in TinyMCE.
 How to build PaintWeb.
 How to extend PaintWeb.
 Some tutorials published by Opera:

 HTML 5 Canvas - the basics.
 Creating an HTML 5 canvas painting application.
 Keyboard accessibility in Web applications.

PaintWeb – Documentation

http://www.robodesign.ro/paintweb/trunk/docs/api-ref/
http://code.google.com/p/paintweb/wiki/UsageInTinyMCE
http://code.google.com/p/paintweb/wiki/BuildingPaintWeb
http://code.google.com/p/paintweb/wiki/ExtendingPaintWeb
http://www.opera.com/
http://dev.opera.com/articles/view/html-5-canvas-the-basics/
http://dev.opera.com/articles/view/html5-canvas-painting/
http://dev.opera.com/articles/view/keyboard-accessible-web-applications-1/

 Web browsers: Opera, Konqueror, Google Chrome,
Firefox and Safari.

 Render engines: Presto, KHTML, Webkit and Gecko.

 Microsoft Internet Explorer does not support Canvas.

 We will probably use excanvas for compatibility.
 The text tool does not work in Opera.

 The attempt to use SVG:Text has failed.
 Shadows do not render in Opera.

 Neither in Chrome, but they work in Safari and
Firefox.

 There are many small and big bugs in Web browsers.

PaintWeb – Compatibility

http://code.google.com/p/explorercanvas/
http://www.robodesign.ro/mihai/blog/canvas-text-rendering

 The Moodle community is very friendly and
welcoming.
 Thanks to Martin Langhoff (mentor), Helen Foster

(GSOC admin at Moodle), Robert O'Callahan (Mozilla)
şi Olli Savolainen (GSOC student at Moodle).

 GSOC was an experience from which I learned lots of
new things and I met many great people.

 GSOC can be a “launch pad” for great projects, not
just a summer job.

 I will continue to collaborate with Moodle.
 This summer should be just the beginning.

 … for a constantly evolving project: PaintWeb.

PaintWeb – Conclusions

http://docs.moodle.org/en/User:Martin_Langhoff
http://docs.moodle.org/en/User:Helen_Foster
http://weblogs.mozillazine.org/roc/
http://www.pilpi.net/

 Polish PaintWeb.
 I have a sufficiently big TODO list for this purpose.

 Polish Moodle 2.0 integration.
 Complete Moodle 1.9 integration.

 Improve the user interface.
 Make a simpler version for kids, for OLPC.

 Release a stable version of PaintWeb.
 The next PaintWeb version:

 Filters, layers, maybe SVG and more.

PaintWeb – What is next

http://code.google.com/p/paintweb/wiki/TODO

PaintWeb – The plans from 2008

 Important features:
 Filters, layers, gradients, patterns, “smart objects” and

maybe SVG.

 Animated interface: CSS Animations.
 Integration into bigger Web applications.
 More HTML 5:

 Offline Web application (Opera Unite, Adobe Air);
 Client-side storage and database storage;
 Drag and drop;
 Server-sent events.

http://unite.opera.com/

PaintWeb – Thanks

 Thank you for your time.
 To test the Web application go to:

 http://code.google.com/p/paintweb

www.robodesign.ro

http://code.google.com/p/paintweb
http://www.robodesign.ro/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30

