

Paint.Web

 Marius and Mihai Şucan
 University of ”Aurel Vlaicu”, Arad, Romania

November 2008

Paint.Web
Presentation outline

 Introduction
 The interface
 Features
 Usage
 Structure
 HTML 5
 JavaScript
 The color editor
 Compatibility
 What can be better
 Plans
 Canvas in the future

 Online Web application for painting. Open-
source project, GPL v3, hosted at
http://code.google.com/p/paintweb.

 This is a technical demonstration of <canvas>
from HTML5, together with Web Forms 2.

 It makes use of the 2D canvas context. This API
allows you to quickly paint on a bitmap 2D
surface using basic functions.

 Canvas was first implemented in Safari by
Apple.

Paint.Web – Introduction

http://code.google.com/p/paintweb

Paint.Web – The interface

Paint.Web – Features

 Drawing:
 selection, rectangle, ellipse, line, Bézier curve, polygon,

crayon, text, images, and an eraser.

 Options:
 save images as PNG, history (undo/redo), canvas resize,

color picker, zoom.

 Properties:
 fill color, stroke color, stroke width, line joins and caps, filled

shapes and stroke-only shapes, shadows (offset, blur and
color), font name, font size, text alignment, and text styling
(bold and italic).

Paint.Web – Usage

 Intuitive interface displaying contextual
information.

 Keyboard shortcuts for each tool and button.
 During drawing some tools allow the use of

keyboard modifiers, such as Shift.
 For example, rectangles become squares, ellipses

become circles, etc.

Paint.Web – Structure

 HTML for the interface.
 CSS for layout/design + PNG images.
 JavaScript for interactivity.
 Strict delimitation: in JS code you won't fine

CSS/HTML, nor will you find CSS/JS in HTML.
 Absolutely no server-side code (PHP, Perl,

Python, etc.). You can run Paint.Web without a
Web server.

Paint.Web – HTML 5
index.html

 <!DOCTYPE html>
 The DOCTYPE relevance is given by the CSS strict

rendering mode activation.

 New attributes:
 <meta charset=”utf-8”>
 Web Forms 2:

 Input type=number/range min=0 max=100 step=0.1
 ... and others

 Invalid code according to validator.w3.org.
 Try www.validator.nu

http://www.validator.nu/

Paint.Web – JavaScript
index.js

 Everything is stored in a single JS object which
is executed when loading the main document.
 No added DOM global properties/methods.
 Easy to integrate into other projects, without any

conflicting function or variable names.

 6300 lines of code with comments for each
function explaining the choices I made and how
it all works.

 Easy to translate: all the messages are grouped into
only two JS objects.

Paint.Web – JavaScript: Structure
Overview

 We will use ”app” to name the main JS object of
the Web application.

 app = function () {
 ... elems, inputs,
 img, img_temp,
 messages, status_texts,
 init, init_tools,
 init_keys, tool_activate,
 ev_canvas, ev_keypress,
 tools, kshortcuts, ... };

 window.onload = app;

Paint.Web – JavaScript: Running

 All the references to important DOM nodes are
stored in app.elems and in app.inputs.

 The 2D context references are stored in
app.img and in app.img_temp.
 During the use of any tool, the temporary drawing is

executed in the temporary buffer (img_temp).
 At the end, the tool code calls app.img_update().

This method copies the image from .img_temp to
.img, and adds a new history step by calling
app.history_add().

Paint.Web – JavaScript: Running

 All the messages used in the application are
stored in app.messages and in .status_texts.
 Messages can be associated to DOM nodes by adding

their ID to .status_texts.

 app.kshortcuts stores the global keyboard
shortcuts with their associated actions.
 Each shortcut can activate a tool and/or call a function.

 app.tools stores the code of each drawing tool.
 Each tool can have code associated for initialization

and for each mouse/keyboard event.

Paint.Web – JavaScript: Running

 The app.init() method prepares the canvas
contexts and adds the majority of event
listeners in the application.
 It also executes other initialization methods:

init_tools(), init_properties(), coloreditor.init() and
init_keys().

 app.init_tools() does the following:
 It adds the event listeners for all the drawing tools.
 It activates the default tool (app.tool_default).

Paint.Web – JavaScript: Running

 The app.init_keys() method adds each
keyboard shortcut to the title of all the
associated buttons.
 This is done to inform the user on the available

keyboard shortcuts.
 For example: Undo [ctrl-z]

 The app.ev_keypress() method is the event
handler for keypress.
 It looks into app.kshortcuts for the keyboard

shortcut. Any shortcut can have a function/tool
associated, which is automatically activated.

Paint.Web – JavaScript: Running

 The app.ev_canvas() method is the event
handler for all canvas-related events (mostly
mouse events).
 The function checks if the active tool has an

associated event handler for the current
event.type. If yes, it is executed.

 The function determines the exact mouse position
in relation to the canvas, irrespective of zoom and
scroll. The coordinates are given to the tool-specific
event handler (ev._x şi ev._y).

Paint.Web – JavaScript: Running

 The app.tool_activate(id, ev) is the method
which allows tool activation.
 It takes two arguments: the tool ID and an optional

DOM event object.
 The tool object construction code can cancel the

activation.
 For example the ”Add image” tool cancels activation

if the user cancels the URL prompt.
 app.tool holds the object of the active tool.

Paint.Web – JavaScript
Minimal code sample from the rectangle tool

 You can find the implementation of all tools in
app.tools.

 app.tools = {
 'rect' : function () {
 var _tool = this;
 _tool.mousedown = function (ev) {
 _tool.x0 = ev._x
 _tool.y0 = ev._y;
 _tool.start = true;
 };
 _tool.mouseup = function () {
 app.img_update();
 _tool.start = false;
 };
.....................................

Paint.Web – JavaScript
Minimal code sample from the rectangle tool

 _tool.mousemove = function (ev) {
 if (!_tool.start) return;

 var x = Math.min(ev._x, _tool.x),
 y = Math.min(ev._y, _tool.y),
 w = Math.abs(ev._x - _tool.x),
 h = Math.abs(ev._y - _tool.y);

 app.img_temp.clearRect(0, 0,
 app.imgW, app.imgH);
 app.img_temp.fillRect(x, y, w, h);
 };
 } // app.tools.rect
}; // app.tools

Paint.Web – JavaScript

 While implementing each tool we tried to ensure
each user action has real-time visualization.
 For example, the Bézier curve tool shows the curve

starting from the first two points, without waiting for
all the points, like other applications.

 The selection tool uses the third canvas
element for storing the selected pixels.
 Unlike other similar applications, Paint.Web allows

the manipulation of pixels and the selection itself
(resize and drag).

Paint.Web – The color editor

 Everything related to the color editor is stored in
the app.coloreditor object:
 Methods for converting colors between color

spaces: RGB, HSV, CIE Lab şi CMYK.
 The draw_chart() and draw_slider() methods deal

with the color space visualization All drawing is
done in a separate canvas element.

 The predefined color palettes are imported from
Photoshop.

Paint.Web – Compatibility
Opera 9.5 (Kestrel)

 Due to some error, the mouse pointer does not
update its shape soon enough, when using the
selection tool.

 On Mac and Windows, the drawImage()
method darkens transparencies.

 The Canvas shadows and text-related APIs are
unimplemented.

Paint.Web – Compatibility
Opera 9.2 (Merlin)

 Same problems like in Kestrel (Opera 9.5) and
more.

 No implementation for get/putImageData, thus
Undo/Redo don't work. The CIE Lab color
space visualization doesn't work either.

 No implementation for
globalCompositeOperation 'lighter'. The
RGB color space visualization doesn't work.

 Some CSS 3 Selectors are unsupported,
breaking the rendering of the color editor.

Paint.Web – Compatibility
Safari 3+

 Safari 3 is similar to Opera 9.2, having no
support for get/putImageData, shadows, nor
text drawing.

 Latest SVN trunk builds of Webkit implement
text and get/putImageData.

 Webkit seems to be the fastest renderer.

Paint.Web – Compatibility
Firefox

 Version 2:

 Slow renderer and extremely slow rendering when it
comes to get/putImageData.

 The Eraser tool doesn't work.
 No support for drawing text and shadows.

 Version 3 is much faster, being similar to Opera 9.5.

 No support for drawing text and shadows, either.
 Version 3.1 (beta) the text and shadows API.

 This is the only Web browser which has complete
support for Paint.Web.

Paint.Web – Compatibility
Other Web browsers

 Konqueror 4+
 I was surprised to see that the KDE developers made

their own <canvas> implementation.
 It implements all the Canvas 2D context API, except

text rendering.
 At the moment, the entire browser is a bit unstable, but

the problems are quickly solved.

 Microsoft Internet Explorer
 It has no support for canvas.
 There are some efforts organized by other groups to

implement canvas in IE.

Paint.Web – What can be better

 The current history (Undo/Redo) stores only
images for each step.
 A hybrid history system would be more efficient.

 The selection tool needs rethinking for ”larger
scale” use.
 The purpose of the reimplementation would be to

have selections of other shapes as well.

 Performance optimizations are much needed.
 A more dynamic interface: side panels and

floating panels.

Paint.Web – Plans
... or some ”ideas”

 Add more important features:
 Filters, layers, gradients, patterns, ”smart objects”,

plugins, and even SVG.

 Animated interface: CSS Animations or SVG.
 Integration into much bigger Web applications.
 More HTML 5:

 Offline Web Application
 Client-side storage and database storage
 Drag and drop
 Server-sent events

Paint.Web – Canvas in the future

 Canvas can have multiple contexts (not at the
same time).

 Besides the 2D context, main browsers are
implementing the 3D context as well.

 Hardware acceleration with OpenGL/DirectX for
both contexts.

 For the 2D context we will have more methods.
 For example, while working on Paint.Web some

browsers added support for rendering text and
shadows.

Paint.Web – Merci

 Thanks for your time.
 To test Paint.Web go to:

 www.robodesign.ro/paint.web
 http://code.google.com/p/paintweb

http://www.robodesign.ro/paint.web
http://code.google.com/p/paintweb

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

